3.5.1 OpenCV Usage on RVV
Last Version: 10/09/2025
Using OpenCV on RVV (RISC-V Vector) is similar to using it on x86 platforms. The main difference is in how the libraries are built and optimized for RVV.
What is OpenCV?
OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine learning software library, initiated by Intel and widely supported by the community.
It provides a cross-platform programming framework for developing real-time computer vision applications.
Common use cases include:
- Image processing and analysis
- Face detection and recognition
- Object detection and tracking
- Machine learning applications
- Video analysis
- Camera calibration and 3D reconstruction
Basic OpenCV API Examples
Reading and Displaying Images
This example shows how to read, display, and save an image.
#include <opencv2/opencv.hpp>
#include <iostream>
int main() {
// Read image
cv::Mat image = cv::imread("input.jpg");
if (image.empty()) {
std::cout << "Failed to read image file" << std::endl;
return -1;
}
// Display image
cv::imshow("Original Image", image);
cv::waitKey(0);
// Save image
cv::imwrite("output.jpg", image);
return 0;
}
Basic Image Operations
This example demonstrates resizing and rotating images.
#include <opencv2/opencv.hpp>
int main() {
cv::Mat image = cv::imread("input.jpg");
// Get image information
int width = image.cols;
int height = image.rows;
int channels = image.channels();
std::cout << "Image dimensions: " << width << "x" << height << std::endl;
std::cout << "Number of channels: " << channels << std::endl;
// Resize image
cv::Mat resized;
cv::resize(image, resized, cv::Size(640, 480));
// Rotate image
cv::Point2f center(image.cols/2.0, image.rows/2.0);
cv::Mat rotationMatrix = cv::getRotationMatrix2D(center, 45, 1.0);
cv::Mat rotated;
cv::warpAffine(image, rotated, rotationMatrix, image.size());
cv::imshow("Resized", resized);
cv::imshow("Rotated", rotated);
cv::waitKey(0);
return 0;
}
Color Space Conversion
This example converts an image to different color spaces.
#include <opencv2/opencv.hpp>
int main() {
cv::Mat image = cv::imread("input.jpg");
// Convert BGR to Grayscale
cv::Mat gray;
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
// Convert BGR to HSV
cv::Mat hsv;
cv::cvtColor(image, hsv, cv::COLOR_BGR2HSV);
// Convert BGR to LAB
cv::Mat lab;
cv::cvtColor(image, lab, cv::COLOR_BGR2LAB);
cv::imshow("Original", image);
cv::imshow("Grayscale", gray);
cv::imshow("HSV", hsv);
cv::imshow("LAB", lab);
cv::waitKey(0);
return 0;
}
Edge Detection
This example shows how to detect edges using Canny and Sobel methods.
#include <opencv2/opencv.hpp>
int main() {
cv::Mat image = cv::imread("input.jpg", cv::IMREAD_GRAYSCALE);
// Canny edge detection
cv::Mat edges;
cv::Canny(image, edges, 50, 150);
// Sobel edge detection
cv::Mat sobelX, sobelY, sobel;
cv::Sobel(image, sobelX, CV_64F, 1, 0, 3);
cv::Sobel(image, sobelY, CV_64F, 0, 1, 3);
cv::magnitude(sobelX, sobelY, sobel);
sobel.convertTo(sobel, CV_8U);
cv::imshow("Original", image);
cv::imshow("Canny Edges", edges);
cv::imshow("Sobel Edges", sobel);
cv::waitKey(0);
return 0;
}
Performance Comparison
Comparing performance between RVV-accelerated OpenCV and non-RVV-accelerated OpenCV.
Performance test example:
#include <opencv2/opencv.hpp>
#include <iostream>
#include <chrono>
int main() {
cv::Mat image = cv::imread("../data/test.jpg");
auto start_time = std::chrono::steady_clock::now();
cv::Mat blob;
cv::resize(image, blob, cv::Size(640, 640));
auto end_time = std::chrono::steady_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);
std::cout << "Resize time: " << duration.count() << " ms" << std::endl;
start_time = std::chrono::steady_clock::now();
cv::Mat blob_float;
blob_float = cv::dnn::blobFromImage(image, 1.0 / 255.0, cv::Size(640, 640), cv::Scalar(0, 0, 0), false, false, CV_32F);
end_time = std::chrono::steady_clock::now();
duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);
std::cout << "blobFromImage time: " << duration.count() << " ms" << std::endl;
return 0;
}
Performance Results
Operation | Non-RVV | RVV Optimized |
---|---|---|
Resize | 10 ms | 6 ms |
blobFromImage | 51 ms | 35 ms |
RVV optimization can significantly improve image processing performance.