Skip to main content

ONNX Runtime

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. To get faster inference speeds for applications, we developed the SpaceMIT Execution Provider, which uses extended AI instructions for acceleration. Simply specify SpaceMITExecutionProvider when developing the application.

Installation

sudo apt-get update
sudo apt-get install -y onnxruntime python3-spacemit-ort libopencv-dev

Verify the installation:

python
>>> import onnxruntime as ort
>>> import spacemit_ort
>>> available_providers = ort.get_available_providers()
>>> print(available_providers)
['SpaceMITExecutionProvider', 'CPUExecutionProvider']

The final output ['SpaceMITExecutionProvider', 'CPUExecutionProvider'] indicates a successful installation.

Using Python API

Prerequisites

sudo apt-get install -y python3-onnx python3-pillow python3-matplotlib python3-opencv

Prepare model, label and image

We provide quantized open-source models, which can be downloaded from ModelZoo. In theory, models from the [ONNX Model Zoo] can also be used for inference, but their performance is slightly inferior to our quantized models.

wget https://archive.spacemit.com/spacemit-ai/ModelZoo/classification.tar.gz
tar -zxf classification.tar.gz
wget -P classification https://archive.spacemit.com/spacemit-ai/ModelZoo/classification/kitten.jpg
wget -P classification https://archive.spacemit.com/spacemit-ai/ModelZoo/classification/synset.txt

Import dependencies

Verify that all dependencies are installed using the cell below. Continue if no errors encountered, warnings can be ignored.

import onnx
import numpy as np
import onnxruntime as ort
import spacemit_ort
from PIL import Image
import cv2
import matplotlib.pyplot as plt
import time

Read image

def get_image(path, show=False):
with Image.open(path) as img:
img = np.array(img.convert('RGB'))
if show:
plt.imshow(img)
plt.axis('off')
return img

Preprocess image

Preprocess inference image -> scale to 0~1, resize to 256x256, take center crop of 224x224, normalize image, transpose to NCHW format, cast to float32 and add a dimension to batchify the image.

def preprocess(img):
img = img / 255.
img = cv2.resize(img, (256, 256))
h, w = img.shape[0], img.shape[1]
y0 = (h - 224) // 2
x0 = (w - 224) // 2
img = img[y0 : y0+224, x0 : x0+224, :]
img = (img - [0.485, 0.456, 0.406]) / [0.229, 0.224, 0.225]
img = np.transpose(img, axes=[2, 0, 1])
img = img.astype(np.float32)
img = np.expand_dims(img, axis=0)
return img

Predict

def predict(path):
img = get_image(path, show=True)
img = preprocess(img)
ort_inputs = {session.get_inputs()[0].name: img}
start = time.time()
preds = session.run(None, ort_inputs)[0]
end = time.time()
preds = np.squeeze(preds)
a = np.argsort(preds)[::-1]
print('time=%.2fms; class=%s; probability=%f' % (round((end-start) * 1000, 2), labels[a[0]], preds[a[0]]))

Load model, label and inference

with open('classification/synset.txt', 'r') as f:
labels = [l.rstrip() for l in f]

# Set the number of inference threads
session_options = ort.SessionOptions()
session_options.intra_op_num_threads = 2

session = ort.InferenceSession('classification/resnet50/resnet50.q.onnx', sess_options=session_options, providers=["SpaceMITExecutionProvider"])

img_path = 'classification/kitten.jpg'
predict(img_path)

Output:

time=95.15ms; class=n02123045 tabby, tabby cat; probability=13.498201

API Overview

For more APIs, please refer to the official API Overview.